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SS2: Foundations in Statistics

Summary of SS2: Foundations in Statistics II

I SS2.1: Regression analysis (this session)

I Simple linear regression and One-way ANOVA models

I Two-way ANOVA models

I Multiple regression models

I SS2.2: Challenges with data and regression analysis

I SS2.3: The design and implementation of experiments and the management of
data
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SS2: Foundations in Statistics

What can you expect to learn from taking the SS2 module?

By the end of SS2, you should be able to:

I Fit and interpret a range of regression and ANOVA models.

I Translate and communicate the outcomes from a statistical model.

I Identify the limitations of standard regression and ANOVA modelling techniques,
and situations where model assumptions may need to be altered.

I Design, implement and collect data from experiments in ways that are statistically
sound.

Any difference in expected outcomes for Statistics PhD students and biological sciences
PhD students? Yes!
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SS2: Foundations in Statistics

What can you expect to learn from taking the SS2 module?

By the end of SS2, Statistics PhD students should additionally be able to:

I Fit and interpret a range of regression and ANOVA models and advise
non-statisticians on same.

I Translate and communicate the outcomes from a statistical model to a
non-statistics audience.

I Identify and communicate to non-statisticians the limitations of standard regression
and ANOVA modelling techniques, and situations where model assumptions may
need to be altered.

I Advise on how to design, implement and collect data from experiments in ways
that are statistically sound.
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SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1: Regression Analysis
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SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1.1: Simple linear regression

SS2.1.1: Simple linear regression
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SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1.1: Simple linear regression

Example - milk production data

The Dairy Herd Improvement Cooperative in Update New York collects and analyses
data on Milk production. It is of interest to predict current milk production from a set
of measured potential predictor variables. The response variable is current milk
production in pounds. Samples are taken once a month during milking.

Reference for dataset: ‘Regression Analysis by Example’ by Chatterjee and Hadi.

Can current milk production can be predicted from the previous month’s production?
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SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1.1: Simple linear regression

Simple linear regression model and assumptions

yi = β0 + β1xi + εi

Where i = 1, ..., n.

β0: is the intercept parameter, the expected mean of Y when x = 0.

β1: is the slope parameter, the change in the expected mean of Y for a one unit
increase in x .

We assume that

1. E [εi ] = 0.
2. Var(εi ) = σ2 (and does not depend on i).
3. εi are independent.
4. εi ∼ N(0, σ2).

The model can be written in different ways, what do the different ways mean?

yi = β0 + β1xi + εi

E [Y ] = β0 + β1x
ŷ = β̂0 + β̂1x
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SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1.1: Simple linear regression

Fitting a simple linear regression model
##
## Call:
## lm(formula = current ~ previous, data = milk)
##
## Residuals:
## Min 1Q Median 3Q Max
## -43.099 -6.403 -1.962 5.058 63.215
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.49063 3.32778 4.354 2.14e-05 ***
## previous 0.80393 0.05135 15.656 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.13 on 197 degrees of freedom
## Multiple R-squared: 0.5544, Adjusted R-squared: 0.5521
## F-statistic: 245.1 on 1 and 197 DF, p-value: < 2.2e-16

β̂0 = 14.49 is the estimated average current month’s milk production (pounds) when
the previous milk production was 0.

β̂1 = 0.80 is the estimated increase in average current milk production in pounds for a 1
pound increase in the previous month’s milk production.

How practical / useful are the interpretations of the intercept and slope for this
example?
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SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1.1: Simple linear regression

Visualising the fitted simple linear regression model
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SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1.1: Simple linear regression

Visualising the fitted simple linear regression model
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SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1.1: Simple linear regression

Simple linear regression diagnostics
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SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1.1: Simple linear regression

Simple linear regression diagnostics
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SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1.1: Simple linear regression

Simple linear regression in matrix notation
The regular form of the SLR model is:

yi = β0 + β1xi + εi where εi ∼ IID N(0, σ2)

where IID stands for independent and identically distributed.

This can be expressed as:
Y = Xβ + ε

y1
y2
...

yn

 =


1 x1
1 x2
...

...
1 xn

 [
β0
β1

]
+


ε1
ε2
...
εn


where Y is the n × 1 response vector, X is the n × 2 design matrix, β is the 2 × 1
parameter vector, and ε is the n × 1 error vector, and:

E(ε) =


0
0
...
0

 Var(ε) =


σ2 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2


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SS2.1.2: Multiple regression models

SS2.1.2: Multiple regression models
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SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1.2: Multiple regression models

Model specification and assumptions
A multiple regression model takes the form:

yi = β0 + β1xi1 + β2xi2 + ...+ βkxik + εi for i = 1 to n

Model assumptions are similar to those as stated for the simple linear regression model:
εi ∼ I.I.D. N(0, σ2).

The model can be expressed using matrix notation as
y1
y2
...

yn

 =


1 x11 x12 . . . x1k
1 x21 x22 . . . x2k
...

...
...

...
1 xn1 xn2 . . . xnk



β0
β1
β2
...
βk

 +


ε1
ε2
...
εn


with dimensions (n × 1), (n × p), (p × 1) and (n × 1), where p = k + 1 is the number of
model parameters.

β is a vector of unknown parameters to be estimated from observed data. βj is the
change in the mean value of Y per unit change in xj , assuming all other independent
variables are held constant. Consequently, the βj parameter estimates depend on which
x ’s are included in the model.
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SS2.1: Regression Analysis

SS2.1.2: Multiple regression models

Milk production multiple regression example
##
## Call:
## lm(formula = current ~ previous + fat + protein, data = milk)
##
## Residuals:
## Min 1Q Median 3Q Max
## -41.419 -7.049 -0.657 5.697 57.750
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 29.77476 7.28785 4.086 6.42e-05 ***
## previous 0.76054 0.05298 14.356 < 2e-16 ***
## fat 1.27922 1.05451 1.213 0.22656
## protein -5.44158 1.75126 -3.107 0.00217 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.9 on 195 degrees of freedom
## Multiple R-squared: 0.5754, Adjusted R-squared: 0.5689
## F-statistic: 88.1 on 3 and 195 DF, p-value: < 2.2e-16

The interpretation of any parameter estimate assumes that other predictors in the
model are held constant.

For example, it is estimated that the average milk production in pounds in the current
month increases by 0.76 for every pound increase in the previous month’s milk
production, holding fat (x2, percent of fat in milk) and protein (x3, percent of protein in
milk) constant.
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SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1.2: Multiple regression models

ANOVA tables and Sums of squares
An ANOVA table is a way to partition the variation in the response according to sources.

## Analysis of Variance Table
##
## Response: current
## Df Sum Sq Mean Sq F value Pr(>F)
## previous 1 36078 36078 254.6289 < 2e-16 ***
## fat 1 1 1 0.0048 0.94506
## protein 1 1368 1368 9.6550 0.00217 **
## Residuals 195 27629 142
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This ANOVA table (generated using the anova() function) presents ‘Type I’ sums of
squares. This means that the variation due to each predictor is ‘given’ the predictors
that come before it in the model. Switching the order gives:

## Analysis of Variance Table
##
## Response: current
## Df Sum Sq Mean Sq F value Pr(>F)
## fat 1 892 892 6.2987 0.01290 *
## previous 1 35186 35186 248.3350 < 2e-16 ***
## protein 1 1368 1368 9.6550 0.00217 **
## Residuals 195 27629 142
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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SS2.1.2: Multiple regression models

Note on sums of squares

I There are three (well actually four. . . ) types of sums of squares (SS) that can be
generated that are usually denoted SS Type I, II and III.

I The SS values presented on the previous slide are Type I SS and often referred to
as ‘sequential’ SS since the order matters. The others are sums of squares for
predictors in the presence of other main effects, or in the presence of main effects
and interactions.

I It can matter which you use! It also matters whether your model includes
interactions or not (Type II and III are the same when there are no interactions)
and whether or not your data are balanced.

I When a predictor is involved in a higher order interaction, it generally does not
make sense to test the significance of the main effect.

This paper is a good read on this topic: Hector, von Felten and Schmid (2010) Analysis
of variance with unbalanced data: an update for ecology & evolution. Journal of Animal
Ecology, 79, 308–316.
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SS2.1.2: Multiple regression models

Interactions

We can include interactions between predictors in multiple regression models:
##
## Call:
## lm(formula = current ~ previous + protein + previous:protein,
## data = milk)
##
## Residuals:
## Min 1Q Median 3Q Max
## -42.557 -6.687 -1.037 5.175 60.529
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.409283 19.826107 1.685 0.0936 .
## previous 0.735351 0.350711 2.097 0.0373 *
## protein -5.034096 6.116428 -0.823 0.4115
## previous:protein 0.007157 0.111588 0.064 0.9489
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.95 on 195 degrees of freedom
## Multiple R-squared: 0.5722, Adjusted R-squared: 0.5657
## F-statistic: 86.95 on 3 and 195 DF, p-value: < 2.2e-16
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SS2.1: Regression Analysis

SS2.1.2: Multiple regression models

Visualising predictions from multiple regression models
The lines show predictions for current milk production versus previous milk production
for protein = 2 (blue) and protein = 6 (turquoise):
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For protein = 2: β̂0 = 33.409 − 5.034 × 2 and β̂1 = 0.735 + 0.007 × 2.

For protein = 6: β̂0 = 33.409 − 5.034 × 6 and β̂1 = 0.735 + 0.007 × 6.
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SS2.1.2: Multiple regression models

Additional considerations

I Diagnostics for multiple regression

I Estimation methods

I Multicollinearity

I Methods for model selection
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SS2.1.3: One-way ANOVA

24



SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1.3: One-way ANOVA

Example - animal survival times data
An randomised experiment was carried out where animals were assigned to various
manipulations and their time to survival (in units of 10 hours) was recorded. There were
12 groups to which a total of 48 animals were assigned at random, giving four animals
per group.

Here is a look at the data:
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SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1.3: One-way ANOVA

Example - animal survival times data
An randomised experiment was carried out where animals were assigned to various
manipulations and their time to survival (in units of 10 hours) was recorded. There were
12 groups to which a total of 48 animals were assigned at random, giving four animals
per group.

Here is a better (!) look at the data:
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SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1.3: One-way ANOVA

One-way ANOVA model

yij = µ+ αi + εij

Where i = 1, ..., k for each level of the factor, j = 1, ..., nk is the replication at each
level of the factor.

µ: is a constant.

αi : is the effect of level i of the factor.

We assume that

1. E [εij ] = 0.
2. Var(εij ) = σ2 (and does not depend on i or j).
3. εij are independent.
4. εij ∼ N(0, σ2).

The model can be written in different ways, what do the different ways mean?

yij = µ+ αi + εij

E [Yij ] = µ+ αi

ŷij = µ̂+ α̂i
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SS2.1.3: One-way ANOVA

The difference between continuous and categorical predictors

The simple linear regression model:

yi = β0 + β1xi + εi

The one-way ANOVA model:

yij = µ+ αi + εij

I How many parameters are in each model?
I What is the difference in how the intercepts are interpreted?
I How many degrees of freedom are needed to estimate each model?

Alternative specification of the one-way ANOVA model:

yij = µ+ α1x1 + α2x2 + ...α12x12 + εij

where x1 to x12 are indicator ‘dummy’ variables for each level of the grouping factor.
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SS2.1.3: One-way ANOVA

One-way ANOVA in matrix notation
The regular form of the one-way ANOVA model is

yij = µ+ αi + εij where εij ∼ IID N(0, σ2)

In our example, i = 1, ..., 12, and each nk = 4, so the model can also be expressed as:

Y = Xβ + ε


y1
y2
...

y47
y48

 =



1 1 0 . . . 0 0
1 1 0 . . . 0 0
1 1 0 . . . 0 0
1 1 0 . . . 0 0
1 0 1 . . . 0 0
...

...
...

...
...

...
1 0 0 . . . 0 1
1 0 0 . . . 0 1




µ
α1
α2
...
α12

 +


ε1
ε2
...
ε47
ε48


where Y is the 48 × 1 response vector, X is an 48 × 13 design matrix, β is a 13 × 1
parameter vector, and ε is the 48 × 1 error vector, and:

E(ε) =


0
0
...
0

 Var(ε) =


σ2 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2


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SS2.1.3: One-way ANOVA

Fitted one-way ANOVA model: interpretation of parameter estimates?
##
## Call:
## lm(formula = time ~ groupF, data = survival)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.32500 -0.04875 0.00500 0.04313 0.42500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.41250 0.07457 5.532 2.94e-06 ***
## groupF2 -0.09250 0.10546 -0.877 0.386230
## groupF3 -0.20250 0.10546 -1.920 0.062781 .
## groupF4 0.46750 0.10546 4.433 8.37e-05 ***
## groupF5 0.40250 0.10546 3.817 0.000513 ***
## groupF6 -0.07750 0.10546 -0.735 0.467163
## groupF7 0.15500 0.10546 1.470 0.150304
## groupF8 -0.03750 0.10546 -0.356 0.724219
## groupF9 -0.17750 0.10546 -1.683 0.101000
## groupF10 0.19750 0.10546 1.873 0.069235 .
## groupF11 0.25500 0.10546 2.418 0.020791 *
## groupF12 -0.08750 0.10546 -0.830 0.412164
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1491 on 36 degrees of freedom
## Multiple R-squared: 0.7335, Adjusted R-squared: 0.6521
## F-statistic: 9.01 on 11 and 36 DF, p-value: 1.986e-07

What constraint on parameters has been used and why is it needed?
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SS2.1.3: One-way ANOVA

The design and parameter matrices



1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0

...
1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 1





µ
α1
α2
α3
α4
α5
α6
α7
α8
α9
α10
α11
α12



How would a constraint on the parameters be enforced via the design matrix?
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SS2.1.3: One-way ANOVA

ANOVA table

## Analysis of Variance Table
##
## Response: time
## Df Sum Sq Mean Sq F value Pr(>F)
## groupF 11 2.20436 0.200396 9.0097 1.986e-07 ***
## Residuals 36 0.80072 0.022242
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The hypothesis being tested here is:

H0: α1 = α2 = · · · = α12 = 0,

versus

HA: At least one αi differs from 0.

What is the interpretation from the ANOVA table and what might the next steps be?
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SS2.1.3: One-way ANOVA

Diagnostics
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SS2.1.4: Two-way ANOVA
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SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1.4: Two-way ANOVA

Example

The data used in the one-way ANOVA model example was actually a two-factor
factorial design. The data was taken from Box and Cox (1964).

Each of the 48 animals was assigned to one of the three poisons (factor with levels: 1,
2, 3) and to one of the four treatments (factor with levels: A, B, C, D).
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SS2.1.4: Two-way ANOVA

Model specification and assumptions

yijk = µ+ αi + βj + γij + εijk

Where, for our example:

µ is a constant

αi is the effect of level i = 1, 2, 3 of poison.

βj is the effect of level j = 1, 2, 3, 4 for the A, B, C, D levels respectively of treatment.

γij is the interaction effect of level i of poison and level j of treatment.

And k = 1, ...4 indicates the replicates within each i , j, combination (it was a full
two-factor factorial balanced design).
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SS2.1.4: Two-way ANOVA

ANOVA table

## Analysis of Variance Table
##
## Response: time
## Df Sum Sq Mean Sq F value Pr(>F)
## poisonF 2 1.03301 0.51651 23.2217 3.331e-07 ***
## treatment 3 0.92121 0.30707 13.8056 3.777e-06 ***
## poisonF:treatment 6 0.25014 0.04169 1.8743 0.1123
## Residuals 36 0.80072 0.02224
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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SS2.1.4: Two-way ANOVA

Examine the two-way ANOVA model with interaction
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SS2.1.4: Two-way ANOVA

ANOVA table without the interaction

## Analysis of Variance Table
##
## Response: time
## Df Sum Sq Mean Sq F value Pr(>F)
## poisonF 2 1.03301 0.51651 20.643 5.704e-07 ***
## treatment 3 0.92121 0.30707 12.273 6.697e-06 ***
## Residuals 42 1.05086 0.02502
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Analysis of Variance Table
##
## Response: time
## Df Sum Sq Mean Sq F value Pr(>F)
## treatment 3 0.92121 0.30707 12.273 6.697e-06 ***
## poisonF 2 1.03301 0.51651 20.643 5.704e-07 ***
## Residuals 42 1.05086 0.02502
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Comparisons across poison levels

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = time ~ poisonF + treatment, data = survival)
##
## $poisonF
## diff lwr upr p adj
## 2-1 -0.073125 -0.2089936 0.0627436 0.3989657
## 3-1 -0.341250 -0.4771186 -0.2053814 0.0000008
## 3-2 -0.268125 -0.4039936 -0.1322564 0.0000606
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SS2.1.4: Two-way ANOVA

Comparisons across treatment levels
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = time ~ poisonF + treatment, data = survival)
##
## $treatment
## diff lwr upr p adj
## B-A 0.36250000 0.18976135 0.53523865 0.0000083
## C-A 0.07833333 -0.09440532 0.25107198 0.6221729
## D-A 0.22000000 0.04726135 0.39273865 0.0076661
## C-B -0.28416667 -0.45690532 -0.11142802 0.0004090
## D-B -0.14250000 -0.31523865 0.03023865 0.1380432
## D-C 0.14166667 -0.03107198 0.31440532 0.1416151
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Diagnostics
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SS2.1.5: Continuous and categorical predictors
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SS2.1.5: Continuous and categorical predictors

Continuous and categorical predictors

So far, we have explored regression models with only continuous predictors, and only
categorical predictors.

Multiple regression models can include both continuous and categorical predictors and
interactions between continuous and categorical predictors are also possible. This type
of analysis is sometimes referred to as ‘Analysis of Covariance’ or ANCOVA.

We will explore this topic further in the lab session.
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SS2.1.6: Recommended reading

45



SS2: Foundations in Statistics
SS2.1: Regression Analysis

SS2.1.6: Recommended reading

Some suggested reading material

Books

OpenIntro Statistics, by Diez, Çetinkaya-Rundel and Barr.

Applied Linear Regression, by Sandford and Weisberg.

Regression Analysis by Example, by Chatterjee and Hadi.

The Statistical Sleuth, by Ramsey and Schafer.

Statistics for experimenters, by Box, Hunter and Hunter.

Papers

Hector, von Felten and Schmid (2010) Analysis of variance with unbalanced data: an
update for ecology & evolution. Journal of Animal Ecology, 79, 308–316.

Zuur,Ieno and Elphick (2009) A protocol for data exploration to avoid common
statistical problems. Methods in Ecology & Evolution, 1, 3–14.

Box and Cox (1964) An Analysis of Transformations. Journal of the Royal Statistical
Society. Series B (Methodological), 26, 211–52.
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