ETHzürich

Data science and statistics in molecular plant breeding

Roland Kölliker 16.04.24 LegumeLegacy Event 3, Zurich

LegumeLegacy

Training event Switzerland, Zurich, 15.4. - 19.4.2024

Genome – trait associations

Identify genomic regions (DNA sequences) that control / influence target phenotypic traits

- Marker trait associations
	- − Linkage mapping and quantitative trait locus (QTL) analysis
		- − Single marker regression, interval mapping, multiple regression, …
- Genome wide association mapping
	- − Analyse the whole genome in a large number of diverse populations
	- − Generalised linear models, linear mixed models, Bayesian approaches, …
- Identification of candidate genes (i.e. genes controlling the trait)
	- − Sequence comparisons to model species (BLAST analysis in large databases)
	- Transcriptomics (analysis of gene expression)
- Validation of candidate genes

What is genetic diversity?

• Genetic diversity can be defined as the genetic differences between individuals within a species or a population

How can genetic diversity be measured?

• Calculation of genetic diversity (or similarity) based on **pedigree information** → Identity By Descent (IBD)

Coefficient of coancestry

- The similarity (or diversity) between two individuals can be expressed using the **coefficient of coancestry Θij**
- The concestry coefficient is defined as **the probabilty that two alleles at a locus, drawn at random from two individuals are identitical by descent**
- Examples:
	- $−$ parent $-$ offspring $Θ = (1/2)^2 = 1/4$
	- $-$ half-sibs $\Theta = (1/2)^3 = 1/8$
	- $-$ full-sibs $\Theta = (1/2)^3 + (1/2)^3 = 1/4$

Calculating the coancestry coefficient

- Algorithms to obtain kinship coefficients often use a technique called "path counting«
- To get the coancestry coefficient for X and Y, we would identify the path linking them through their common ancestor(s)

• If the X and Y have ancestor A in common, and if there are n individuals (including X, Y) in the path linking them through A, then the coancestry of X and Y , is

$$
\theta_{XY} = \left(\frac{1}{2}\right)^n
$$

• If there are several ancestors, this expression is summed over all the ancestors

Path counting: parent-offspring

 \boldsymbol{X} Y

• The common ancestor of parent X and child Y is X. The path linking X; Y to their common ancestor is YX and this has $n = 2$ individuals. Therefore

$$
\theta_{XY} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}
$$

Path counting: half sibs

• The common ancestor of half sibs X and Y is V. The path linking X, Y to their common ancestor is XVY and this has $n = 3$ individuals. Therefore

$$
\theta_{XY} = \left(\frac{1}{2}\right)^3 = \frac{1}{8}
$$

Path counting: full sibs

• The common ancestors of full sibs X and Y are U and V. The paths linking X and Y to their common ancestors are XUY and XVY and these each have n = 3 individuals, therefore

$$
\theta_{XY} = \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^3 = \frac{1}{4}
$$

Path counting: first cousins

• Calculate the kinship coefficient for first cousins X, Y using path counting

Limitations of pedigree-based estimates of genetic diversity

- Often very complex pedigrees in breeding schemes, particularly for population-based cultivars in outbreeding crops
- Pedigree information not or only partially available
- No comparison possible to unrelated populations, wild ancestors etc.

Estimating genetic diversity

Compare heritable properties of individuals and calculate genetic diversity

- **Phenotypic markers**
	- − binary traits
		- − leaf marks, awns
	- − quantitative traits
		- − leaf width, spike length, plant height, flower morphology,…
	- − need to eliminate effects caused by environmental factors
		- \rightarrow replicated field trials

Estimating genetic diversity

- **Molecular genetic markers**
	- − Differences in DNA sequences
		- − Large number of markers available
		- − Not influenced by the environment
	- − Various marker systems
		- − **S**imple **S**equence **R**epeats
		- − **A**mplified **F**ragment **L**ength **P**olymorphism
		- − **S**ingle **N**ucleotide **P**olymorphism
		- − **G**enotyping **B**y **S**equencing

− …

• Repetitive DNA motifs (2-4bp)

• Polymorphisms: variable number of repeated elements

• Flanking regions are often conserved \rightarrow PCR amplification

Estimating genetic diversity

- Describe individuals under investigation with as many markers (phenotypic or genotypic) as available
- Compute pairwise differences between individuals using all marker information
- Different measures available depending on marker data
	- − **Euclidean Squared Distance**

$$
E_{ij}^2 = \sum_{k} (x_{ki} - x_{kj})^2
$$

- $i_{i,j}$ = individual plants, k_{k} = marker locus
- − phenotypic data (qualitative and quantitative)
- − dominant marker data (e.g. AFLP): equals the number of marker differences between two individuals

Euclidean squared distance

- Example
	- − Two individual plants (A, B)
	- − Two traits (plant height, number of flowers)

- $E^2 = (150-120)^2 + (15-35)^2 = 130$
	- Different scales \rightarrow scale (and center) data

Measures of genetic diversity

LegumeLegac[,]

- Simple Matching Coefficient
	- $-(a + d)/(a + b + c + d)$
	- − for dominant marker data (AFLP)
	- − considers that absence corresponds to homozygous loci
- Jaccard Coefficient
	- $a/(a + b + c)$
	- − for co-dominant data (SSR)
	- − only counts bands present in either individual
- Nei-Li Coefficients
	- $2a/(2a + b + c)$
	- − for co-dominant data (SSR)
	- − percentage of shared bands

Measures of genetic diversity

- **Identity By State (IBS)**
	- − proportion of loci at which two individuals share the same alleles (1 for complete identity)
	- − note the difference to IBD (independent mutations
- **Rogers Distance** *RD* =1− *IBS*
- **Modified Rogers Distance**

$$
MRD = \sqrt{1 - IBS}
$$

− for co-dominant data (SNP)

Data analysis / interpretation

• Analysis of genetic diversity usually involves a large number of individuals characterised at a large number of loci

- Multivariate descriptive analyses facilitate the identification of groups of individuals
	- − cluster analysis
	- − principle component analysis
	- − multidimensional scaling

Cluster analysis

- group observations using objective criteria
- calculate similarity or difference between individual observations (e.g.using Euclidean distance)
- draw graphical representation starting with most similar observation
- and 'let the tree grow'
- various clustering algorithms depending on research question

Clustering algorithms

- UPGMA: unweighted pair group method with arithmetic mean
	- − Proximity between two clusters is the arithmetic mean of all the proximities between the objects of one, on one side, and the objects of the other, on the other side.
- Ward's method of minimal increase of sum of squares
	- − Proximity between two clusters is the magnitude by which the summed square in their joint cluster will be greater than the combined summed square in these two clusters
-

Interpreting dendrograms

Interpreting dendrograms

- Define numer of relevant clusters
- Bootstrap analysis for cluster support

Principal Component Analysis

basic idea: visualise multidimensional data

- reduce the dimension of the data set
- retain most important variation of the data
- transform original data into new uncorrelated variables in a way that variation on new variables is maximised

history

- 1901: first proposed (Karl Pearson)
- 1933: general procedures established (Harold Hotelling)
- 1970's: widely adopted

 $\frac{1}{1}$

The principles of principal component analysis

Principle Components (PC)

- represent the underlying structure in the data
- give the directions where there is the most variance

ETH

The principles of principal component analysis

Principle Components (PC)

ETH

- give the directions where there is the most variance
- are linear combinations of the original variables

The principles of principal component analysis

Principle Components (PC)

ET.

- are linear combinations of the original variables (PC $1 = a_1x + b_1y$)
- are orthogonal (uncorrelated) to each other

acy
Principal component analysis

- Visualisation of similarity or relatedness of samples
- The closer the point, the more similar the samples

Multidimensional scaling

- visualizing between-object distances in a multidimensional space by minimizing a loss function
- based on distance matrix
- when based on Euclidean distance == Principle component analysis!

PCO1 vs. PCO2

FROM MARKER DATA TO POPULATION STRUCTURE

AFLP (Amplified Fragment Length Polymorphism)

AFLP peaks

AFLP patterns of three red clover cultivars

Data matrix >> principle component analysis

Distance matrix >> cluster analysis,

multidimensional scaling

Data analysis

Exercise

• Genetic diversity among individuals

Exercise - AFLP data

Exercise - Genetic distance

• Calculate the genetic distance between plants 1, 2 and 3 using the following formula:

$$
E_{ij}^2 = \sum_{k} (x_{ki} - x_{kj})^2
$$

 i,j = individual plants, k = marker locus

• Draw a dendrogram illustrating the relationships among the plants

• Calculate the genetic distance between plants 1, 2 and 3 using the following formula:

- i,j = individual plants, $k =$ marker locus
- Draw a dendrogram illustrating the relationships among the $E_{ij}^2 = \sum_k (x_{ki} - x_{kj})^2$
i,j = individual plants,
marker locus
Draw a dendrograr
illustrating the
relationships amon
plants

• Binary matrix

• Distance matrix

Exercise - dendrogram

Five populations of *Centaurea jacea* have been sampled from five countries (**Switzerland; CH, Hungary; HU, Italy; IT, Norway; NO and Slovenia; SL**). Populations consisted of **19 individual plants each** and were analysed using amplified fragment length polymorphism (AFLP) markers. The file "centData.txt" contains the data of **268 markers** for the 95 individual plants. Use **multivariate analyses such as cluster analysis, principle components analysis (PCA) and analysis of molecular variance (AMOVA).** You profit the most if you try to find the solutions yourself. However, don't hesitate to ask for assistance during the lecture. Also, a possible solution is given in

"https://n.ethz.ch/~rolandko/download/cent_fancy.R".

Centaurea jacea

• **MARKER ASSISTED POLYCROSS BREEDING IN ITALIAN RYEGRASS**

Breeding forage crops

- Mostly cross-pollinating species
	- − Wind or insect pollination
	- − High degree of self-incompatibility
- Breeding mainly focused on population cultivars
	- − Open pollinated cultivars
		- − Population improvement through recurrent selection
	- − Synthetic cultivars
		- − Intercrossing of a limited number of selected parents
		- − Multiplication by random open pollination in isolation

Ryegrass breeding

- Perennial ryegrass
	- − Important forage grass of temperate regions
	- − Outbreeding species
	- − Poly cross breeding; cultivar = heterogeneous population
- Genetic diversity
	- − Heterosis, combining ability
	- − Inbreeding depression, self-incompatibility
	- − Uniformity >> cultivar registration
	- − Variability >> performance, adaptability

Task: Finding optimal diversity

Aim of the study

• To assess the effect of genetic diversity among parental plants on agronomic performance and diversity of polycross progenies

Experimental setup

- Molecular characterisation of potential parental plants
- Selection of parents based on AFLP marker diversity
- Genetic and phenotypic assessment of progenies

Selection of parental plants

• **Plant material**

- − 98 perennial ryegrass plants
- − Advanced breeding germplasm
- − 3 groups (date of heading)
	- − Early, intermediate, late
		- − ~4 days difference between groups
		- − All plants early flowering

• **Genetic diversity**

- − 184 AFLP polymorphic markers
- − Pairwise comparison of plants
- $-$ Euclidean squared distance (E^2)
	- − Marker diversity (Ε2/No. of markers)
- − Multivariate analyses
- − Selection of parental plants based on genetic diversity

Diversity among parents

- No grouping of parental germplasm according to date of heading
- Considerable genetic diversity ($E^2 = 51.7$)
- AFLP results reflected pedigree information

Principle Component Analysis

Selection of parental plants

- Polycrosses (PC) with different levels of genetic diversity
	- − Selection of parental plants based on molecular markers
		- − 6 closely related plants >> PC narrow
		- − 6 more distantly related plants >> PC wide
		- − 2 PC per group

Cluster analysis group "late"

Cluster analysis of individual PC

PC "narrow"

Cluster analysis based on 184 AFLP markers

E²=Euclidean distance, %=Marker diversity (E $2/$ no. of markers)

Diversity is considerably lower in "narrow" polycrosses

Validation of marker data

- Does AFLP diversity reflect the breeding history of the plants?
- Pedigree Information
	- − Pair-crosses
	- − Mutual pollination (only 1 parent known)
	- − Self pollination
- Covariance coefficient
	- − 2 x probability of a shared allele at a locus

AFLP – pedigree: PC "narrow"

AFLP and pedigree data are consistent

ETHzürich

AFLP – pedigree: PC "wide"

Partial consistence

ETHzürich

Genetic diversity of progenies

• **216 Syn1 plants**

- − 36 progeny per PC
- − 6 progeny per motherplant
- **Genetic diversity**
	- − 184 AFLP markers previously scored in parental plants
	- $-$ Euclidean squared distance (E^2)

Separation of populations

Principle Component Analysis

ETHzürich

Diversity in parents and Syn 1

Phenotypic characterisation

- Field trials with Syn1 and Syn2 populations in 2004
- **Agronomic performance**
	- − Dry matter yield
	- − Plot trials
- **Uniformity**
	- − Heading date (UPOV)
	- − Spaced plant measurements

Dry matter yield

Phenotypic variation (heading date)

Conclusions

- AFLP markers allow for the selection of parental plants with different levels of genetic diversity
- Differences in genetic diversity are partially transmitted to Syn1 progenies
- High genetic diversity among polycross parents can have a positive effect on agronomic performance of progenies