7. Interpreting the final model using visualisations
[bookmark: Xb8b822beca052c8b25401561b5e6d96883d159a]Visualising species contributions to predicted response
# Extract the four monocultures, and centroid community from data at two N levels
subset_comms <- model_data %>% 
  # Filter the specific communities by their number in the dataset
  filter(community %in% c(1, 2, 3, 4, 27)) %>% 
  # Remove any duplicates and only include columns used in the model
  distinct(p1, p2, p3, p4, bfg_G_L, regN)

subset_comms

# Use the prediction_contributions function from DImodelsVis package
prediction_contributions(# model accepts a DImodel object
                         model = mod_final, 
                         # data accepts a data-frame with species communities to show on plot
                         data = subset_comms,
                         # bar_labs can be used to give labels to the X-axis
                         bar_labs = c("G1", "G1_reg", "G2", "G2_reg", "L1", "L1_reg", "L2", "L2_reg", "Cent", "Cent_reg"))

# Try different sets of communities in the data and try to create a
# similar plot for all equiproportional communities in the original data
[bookmark: average-change-in-yield-over-richness]Average change in yield over richness
# This function can be used to visualise the predicted response for 
# specific communities shown using pie-glyphs and show the average
# change in response over the richness gradient
gradient_change(# DI model object
                model = mod_final,
                # data to be used for making predictions
                data = model_data,
                # Specify any treatment variables in here as list
                # A separate plot will be created for each value specified here
                add_var = list(regN = c(0, 1)),
                # How to arrange the created plots in a grid
                nrow = 1)

# Try different datasets in data and see how the average relationship changes
# Hint generate average relationship for richness using all possible
# equi-proportional communities by specifying the following in data argument
# `get_equi_comms(4, variables = c("p1", "p2", "p3", "p4"))` 
[bookmark: Xb0abf35263111155e23471eb53f04c527118497]Visualise effects of adding or removing a species from a community
# This function allows to visualise the changes in the predicted response
# if a particular species is added or removed from a community whilst 
# keeping the relative proportions of the remaining species constant
# Visualising these changes for several communities could show the average
# effect of adding/removing any species 

# First we need to choose the communities that we wish to visualise
# We will visualise the effect of adding each of four species to all the
# communities in the original design at lowN level
lowN_data <- model_data %>% 
              # filter only those communities receiving low N
              filter(regN == 0) %>% 
              # Select only the species proportions and dummy variable
              select(p1, p2, p3, p4, regN)
head(lowN_data)

visualise_effects(# DImodel object
                  model = mod_final,
                  # Data containing communities to be visualised
                  data = lowN_data,
                  # Which species to focus on, will choose all by default
                  # But remove a particular species from here if needed
                  var_interest = c("p1", "p2", "p3", "p4"),
                  # Visualising the effect of adding a species
                  # change to "decrease" to visualise effect of species loss
                  effect = "increase",
                  # Whether to show confidence interval around prediction
                  se = FALSE,
                  # Whether to show the average effect
                  average = TRUE)
# In this example we will visualise the effect of adding each of four 
# species to all the communities in the original design at regN level
regN_data <- model_data %>% 
              # filter only those communities receiving regular N
              filter(regN == 1) %>% 
              # Select only the species proportions and dummy variable
              select(p1, p2, p3, p4, regN)
head(regN_data)

visualise_effects(# DImodel object
                  model = mod_final,
                  # Data containing communities to be visualised
                  data = regN_data,
                  # Which species to focus on, will choose all by default
                  # But remove a particular species from here if needed
                  var_interest = c("p1", "p2", "p3", "p4"),
                  # Visualising the effect of adding a species
                  # change to "decrease" to visualise effect of species loss
                  effect = "increase",
                  # Whether to show confidence interval around prediction
                  se = FALSE,
                  # Whether to show the average effect
                  average = TRUE)

# Visualise the above two plots by adjusting the aesthetics of the plot 
# or specifying different communities in the data, perhaps those which
# weren't already present in the design. Also visualise the uncertainty.
[bookmark: Xb22fdf5e4dfbd24ddc412a25b2b737f84252b9a]Visualise the predicted response across the simplex space
# Visualise the predicted response by changing the proportion of three 
# species while fixing the proportion of remaining species to be constant

# The response would be shown as a contour map in a ternary diagram with
# one species fixed to be at value P while the remaining three to vary 
# between 0 and 1 - P.

# We will prepare the data first
cond_tern_data <- conditional_ternary_data(
      # column name of species
      prop = c("p1", "p2", "p3", "p4"), 
      # Models object
      model = mod_final, 
      # Which three species to show within the ternary
      tern_vars = c("p1", "p2", "p3"), 
      # Name of the fourth species along with fixed values
      conditional = data.frame("p4" = c(0, 0.25, 0.5)),
      # Same as before, any additional treatment variables
      # One plot for each value specified here
      add_var = list(regN = c(0, 1)),
      # increase this to make the plot more detailed
      # but higher values would imply longer runtimes
      resolution = 1,
      # Predictions can be made directly but holding off
      # for now as we need to add the between_FG term
      prediction = FALSE)
# See structure of data
head(cond_tern_data)

# Add the bfg_G_L column to the data
cond_tern_data <- cond_tern_data %>% 
  # Same as before, using DI_data and appending FG columns to data
  bind_cols(DI_data(prop = c("p1", "p2", "p3", "p4"), 
                    what = "FG",
                    FG = c("G", "G", "L", "L"),
                    data = .))

# Add predictions now
cond_tern_data <- cond_tern_data %>% 
  # Helper function to add predictions
  add_prediction(model = mod_final)
# This is how final data looks
head(cond_tern_data)

conditional_ternary_plot(# Data generated before with predictions
                         data = cond_tern_data,
                         # don't print numbers on contours,
                         contour_text = FALSE,
                         # lower limit to show on legend
                         lower_lim = 6, 
                         # upper limit to show on legend
                         upper_lim = 18,
                         # number of levels for contour
                         nlevels = 8,
                         # Arrange resultant plots in two rows
                         nrow = 2)

# Try more examples by adapting the above code and trying different values
# for p4 or trying to fix a different species to be constant
[bookmark: X8bad21a2e2c18c3656629ddec07290845e21ecf]Visualise the response at the functional group level
# This function can be used to visualise the predicted response at the
# functional group level by combining species within a functional group.
# The resultant plot is shown as a ternary diagram

# Same as conditional ternary we prepare the data first
group_tern_data <- grouped_ternary_data(
    # column name of species
    prop = c("p1", "p2", "p3", "p4"), 
    # Models object
    model = mod_final, 
    # Which species to group in a functional group
    # There should be three unique groups specified here
    # In this example, we group the legumes together but leave
    # the grasses ungrouped.
    # Alternatively we could group grasses as follows
    # FG = c("G", "G", "L1", "L2")
    FG = c("G1", "G2", "L", "L"),
    # The ratio in which the FG proportion should be split
    # between the component species
    # G1 and G2 are in their own groups so are 100% each while
    # the total legume proportion is split 50-50 between 
    # p3 and p4. This can be changed however, for example,
    # an 80-20 split can be specified as c(1, 1, 0.8, 0.2)
    values = c(1, 1, 0.5, 0.5),
    # Additional treatment variables
    add_var = list(regN = c(0, 1)),
    # increase this to make the plot more detailed
    # but higher values would imply longer runtimes
    resolution = 1
)

# See structure of data
head(group_tern_data)

# Add the bfg_G_L column to the data
group_tern_data <- group_tern_data %>% 
  # Same as before, using DI_data and appending FG columns to data
  bind_cols(DI_data(prop = c("p1", "p2", "p3", "p4"), 
                    what = "FG",
                    FG = c("G", "G", "L", "L"),
                    data = .))

# Add predictions now
group_tern_data <- group_tern_data %>% 
  # Helper function to add predictions
  add_prediction(model = mod_final)
# This is how final data looks
head(group_tern_data)

# All parameters are same as before
grouped_ternary_plot(# Data generated before with predictions
                     data = group_tern_data,
                     # don't print numbers on contours,
                     contour_text = FALSE,
                     # lower limit to show on legend
                     lower_lim = 6, 
                     # upper limit to show on legend
                     upper_lim = 18,
                     # number of levels for contour
                     nlevels = 8,
                     # Arrange resultant plots in one rows
                     nrow = 1)

# Try more examples of this visualisation by trying different ratios of 
# splitting the total legume proportion or grouping the grasses instead.
