7. Interpreting the final model using visualisations
[bookmark: Xb8b822beca052c8b25401561b5e6d96883d159a]Visualising species contributions to predicted response
Extract the four monocultures, and centroid community from data at two N levels
subset_comms <- model_data %>%
 # Filter the specific communities by their number in the dataset
 filter(community %in% c(1, 2, 3, 4, 27)) %>%
 # Remove any duplicates and only include columns used in the model
 distinct(p1, p2, p3, p4, bfg_G_L, regN)

subset_comms

Use the prediction_contributions function from DImodelsVis package
prediction_contributions(# model accepts a DImodel object
 model = mod_final,
 # data accepts a data-frame with species communities to show on plot
 data = subset_comms,
 # bar_labs can be used to give labels to the X-axis
 bar_labs = c("G1", "G1_reg", "G2", "G2_reg", "L1", "L1_reg", "L2", "L2_reg", "Cent", "Cent_reg"))

Try different sets of communities in the data and try to create a
similar plot for all equiproportional communities in the original data
[bookmark: average-change-in-yield-over-richness]Average change in yield over richness
This function can be used to visualise the predicted response for
specific communities shown using pie-glyphs and show the average
change in response over the richness gradient
gradient_change(# DI model object
 model = mod_final,
 # data to be used for making predictions
 data = model_data,
 # Specify any treatment variables in here as list
 # A separate plot will be created for each value specified here
 add_var = list(regN = c(0, 1)),
 # How to arrange the created plots in a grid
 nrow = 1)

Try different datasets in data and see how the average relationship changes
Hint generate average relationship for richness using all possible
equi-proportional communities by specifying the following in data argument
`get_equi_comms(4, variables = c("p1", "p2", "p3", "p4"))`
[bookmark: Xb0abf35263111155e23471eb53f04c527118497]Visualise effects of adding or removing a species from a community
This function allows to visualise the changes in the predicted response
if a particular species is added or removed from a community whilst
keeping the relative proportions of the remaining species constant
Visualising these changes for several communities could show the average
effect of adding/removing any species

First we need to choose the communities that we wish to visualise
We will visualise the effect of adding each of four species to all the
communities in the original design at lowN level
lowN_data <- model_data %>%
 # filter only those communities receiving low N
 filter(regN == 0) %>%
 # Select only the species proportions and dummy variable
 select(p1, p2, p3, p4, regN)
head(lowN_data)

visualise_effects(# DImodel object
 model = mod_final,
 # Data containing communities to be visualised
 data = lowN_data,
 # Which species to focus on, will choose all by default
 # But remove a particular species from here if needed
 var_interest = c("p1", "p2", "p3", "p4"),
 # Visualising the effect of adding a species
 # change to "decrease" to visualise effect of species loss
 effect = "increase",
 # Whether to show confidence interval around prediction
 se = FALSE,
 # Whether to show the average effect
 average = TRUE)
In this example we will visualise the effect of adding each of four
species to all the communities in the original design at regN level
regN_data <- model_data %>%
 # filter only those communities receiving regular N
 filter(regN == 1) %>%
 # Select only the species proportions and dummy variable
 select(p1, p2, p3, p4, regN)
head(regN_data)

visualise_effects(# DImodel object
 model = mod_final,
 # Data containing communities to be visualised
 data = regN_data,
 # Which species to focus on, will choose all by default
 # But remove a particular species from here if needed
 var_interest = c("p1", "p2", "p3", "p4"),
 # Visualising the effect of adding a species
 # change to "decrease" to visualise effect of species loss
 effect = "increase",
 # Whether to show confidence interval around prediction
 se = FALSE,
 # Whether to show the average effect
 average = TRUE)

Visualise the above two plots by adjusting the aesthetics of the plot
or specifying different communities in the data, perhaps those which
weren't already present in the design. Also visualise the uncertainty.
[bookmark: Xb22fdf5e4dfbd24ddc412a25b2b737f84252b9a]Visualise the predicted response across the simplex space
Visualise the predicted response by changing the proportion of three
species while fixing the proportion of remaining species to be constant

The response would be shown as a contour map in a ternary diagram with
one species fixed to be at value P while the remaining three to vary
between 0 and 1 - P.

We will prepare the data first
cond_tern_data <- conditional_ternary_data(
 # column name of species
 prop = c("p1", "p2", "p3", "p4"),
 # Models object
 model = mod_final,
 # Which three species to show within the ternary
 tern_vars = c("p1", "p2", "p3"),
 # Name of the fourth species along with fixed values
 conditional = data.frame("p4" = c(0, 0.25, 0.5)),
 # Same as before, any additional treatment variables
 # One plot for each value specified here
 add_var = list(regN = c(0, 1)),
 # increase this to make the plot more detailed
 # but higher values would imply longer runtimes
 resolution = 1,
 # Predictions can be made directly but holding off
 # for now as we need to add the between_FG term
 prediction = FALSE)
See structure of data
head(cond_tern_data)

Add the bfg_G_L column to the data
cond_tern_data <- cond_tern_data %>%
 # Same as before, using DI_data and appending FG columns to data
 bind_cols(DI_data(prop = c("p1", "p2", "p3", "p4"),
 what = "FG",
 FG = c("G", "G", "L", "L"),
 data = .))

Add predictions now
cond_tern_data <- cond_tern_data %>%
 # Helper function to add predictions
 add_prediction(model = mod_final)
This is how final data looks
head(cond_tern_data)

conditional_ternary_plot(# Data generated before with predictions
 data = cond_tern_data,
 # don't print numbers on contours,
 contour_text = FALSE,
 # lower limit to show on legend
 lower_lim = 6,
 # upper limit to show on legend
 upper_lim = 18,
 # number of levels for contour
 nlevels = 8,
 # Arrange resultant plots in two rows
 nrow = 2)

Try more examples by adapting the above code and trying different values
for p4 or trying to fix a different species to be constant
[bookmark: X8bad21a2e2c18c3656629ddec07290845e21ecf]Visualise the response at the functional group level
This function can be used to visualise the predicted response at the
functional group level by combining species within a functional group.
The resultant plot is shown as a ternary diagram

Same as conditional ternary we prepare the data first
group_tern_data <- grouped_ternary_data(
 # column name of species
 prop = c("p1", "p2", "p3", "p4"),
 # Models object
 model = mod_final,
 # Which species to group in a functional group
 # There should be three unique groups specified here
 # In this example, we group the legumes together but leave
 # the grasses ungrouped.
 # Alternatively we could group grasses as follows
 # FG = c("G", "G", "L1", "L2")
 FG = c("G1", "G2", "L", "L"),
 # The ratio in which the FG proportion should be split
 # between the component species
 # G1 and G2 are in their own groups so are 100% each while
 # the total legume proportion is split 50-50 between
 # p3 and p4. This can be changed however, for example,
 # an 80-20 split can be specified as c(1, 1, 0.8, 0.2)
 values = c(1, 1, 0.5, 0.5),
 # Additional treatment variables
 add_var = list(regN = c(0, 1)),
 # increase this to make the plot more detailed
 # but higher values would imply longer runtimes
 resolution = 1
)

See structure of data
head(group_tern_data)

Add the bfg_G_L column to the data
group_tern_data <- group_tern_data %>%
 # Same as before, using DI_data and appending FG columns to data
 bind_cols(DI_data(prop = c("p1", "p2", "p3", "p4"),
 what = "FG",
 FG = c("G", "G", "L", "L"),
 data = .))

Add predictions now
group_tern_data <- group_tern_data %>%
 # Helper function to add predictions
 add_prediction(model = mod_final)
This is how final data looks
head(group_tern_data)

All parameters are same as before
grouped_ternary_plot(# Data generated before with predictions
 data = group_tern_data,
 # don't print numbers on contours,
 contour_text = FALSE,
 # lower limit to show on legend
 lower_lim = 6,
 # upper limit to show on legend
 upper_lim = 18,
 # number of levels for contour
 nlevels = 8,
 # Arrange resultant plots in one rows
 nrow = 1)

Try more examples of this visualisation by trying different ratios of
splitting the total legume proportion or grouping the grasses instead.
